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Fig. 1. Time-series visualization using a dedicated library for data scientists.

Abstract—The current paper demonstrates the use and design of time-oriented data visualization library for data scientists working
in a Notebook environment. We provide visual interaction of event pattern for exploration, as exemplified on Fitbit data in Fig. 1.

1 Motivation

Data science is emerging from being a purely statistician
led work to domain experts having deeper and broader under-
standing of the subject matter, but requiring more consumable
environments to access data and analytic models. Visual ana-
lytics is one methodology that provides a solution for domain
experts. It enables to use visualization as an interface be-
tween the user and the analytic algorithms, and provides a
feedback by displaying the analytic results. The current works
demonstrates the design and use of interactive visualization
in data science environment, such as iPython Notebook, in
a highly consumable environment. The contributions of this
demonstration are in creating a dedicated library for data sci-
entists - as opposed to visualization experts or programmers,
and in accommodating for different properties of temporal
data, rather than a general purpose visualization framework.

2 Architecture Design

There are an increasing number of visualization libraries for
different environments, or even cross-environment that aim to
provide programmers or visualization experts the tools to cre-
ate representations of data. Many of these also support direct
manipulation of properties of the display selection and filtering
of the data itself. Just to emphasize some the existing solution,
we mention here plot.ly (plot.ly/), shiny (shiny.rstudio.com/)
and MPLD3 (mpld3.github.io/) among the many.

Our design has a different strategy. The primary goal is to
shorten the time from data to insight, through visualization in
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one particular domain, without requiring knowledge in pro-
gramming or in visualization per se. Our focus has been to
support common visualization tasks in health-care in particu-
lar. What characterizes this domain is the longitudinal (such
as electronic health care records) and sensor data from med-
ical devices and wearables. Users often aim at discovering
event patterns of particular sequence, or temporal alignment
relative to common events and index dates. Supporting these
tasks from a visualization perspective requires a rich set of
visual layouts, and interaction techniques. In order to achieve
this, we only use one configuration API to define and param-
eterize the visualization, which can be adopted to a specific
domain language,.

The most inner layer of our architecture is a javascript
library, which wraps a highly configurable D3 charts and pro-
vides automatic computation of all parameters, when these are
not provided by the user. This library can be used from a web
programming environment on its own, if required. The benefit
of this approach is that it allows us easily integrate this imple-
mentation into any programming language and environment
that allows HTML display.

We initially made this charting library available in IPython.
We provide a thin Python client library as a package that
the user can install in her/his environment and import into
the notebook. The Python library leverages IPython rich dis-
play system to dynamically construct an HTML that contains
both the JSON data and configuration, and in return calls the
javascript library to produce the visualization. This approach
can be extended easily to other Jupyter kernel languages, for
example leveraging IRDisplay in R.

The chart configuration includes the date-time attribute
shared among all the data-records, This variable is converted
into a canonical representation supporting point and interval
events. Uses can also configure the identifiers of events, de-
rived events, and references thereof to originating events. A
setting parameter of the configuration aims at exactly how
these event types should be visualized. The user can set the
marker and channels of the view, as proposed by Tamara Mun-
zner’s nested model for information visualization [2]. Marks



include simple elements, such as bars, icons, symbols, but also
more complex structures such as areas, lines or even stacked
charts. Channels include all visual attributes, such as color,
size, shape, and others. that are freely configurable within
a set of available options. Further, part of the setting is the
value attribute, which encoded in the chart as the y-axes vari-
able. The value attribute, in order to support a large variety of
options, can be one of the data attributes, or a function based
on attributes of the data.

We support several types of charts for difference natures
of time, as described by Aigner et al. [1]. Sequential time
representation for trends and tendencies is supported by time-
line charts, which is demonstrated in this work. In addition,
beyond the scope of this paper, we support radial and calendar
charts to detect seasonality patterns. Relationships between
events and patterns is made assessable though interaction
techniques and through alignment functions to index dates
that support absolute and relative time dimensions. Configu-
rations share a common syntax for each chart.

A simple example of a configuration could be like:

1 {"settings": [{

2 "key":"eventType",

3 "valueAttr":"value",

4 "chart":"symbol",

5 "symbol":"diamonds",

6 "color":"#ff7f00"

7 ]}

An example with more sophisticated configuration to com-
pute the BMI value on height and weight during a diet:

1 {"settings": [{

2 "key":"eventType",

3 "valueAttr": function(d){

4 var bmi = d.weight/(d.height/100*d.height/100);

5 return bmi;

6 },

7 "chart":"line",

8 "color": {

9 scale:"threshold",

10 range:[’#ef8a62’,’#f7f7f7’,’#67a9cf’],

11 domain:[18.5,25,infinite]

12 }

13 }]}

In addition, since all charts are aligned along the same
temporal dimension, event types can freely be merged into one
single chart with multiple axes using the mergeTo property
with reference to the key attribute. Interaction is key in
visualization, which is supported out of the box using the
brush, pan, zoom and mouse events for each setting. The
former generate direct manipulation on the charts, and the
latter shows tooltip with all attribute of a data record.

3 Instantiation

We instantiated the described methodology on a fitbit
(https://www.fitbit.com/) dataset as it is available through their
official API (https://dev.fitbit.com/docs/). For demonstration
purposes, we showed in our ipython Jupyter Notebook only the
heart-rate and activity levels. Each of these variables shows
the relative amount of time spend during a workout in one
of four different levels reaching from low-to high categories.
Results are shown in Fig 2. The first chart on the top shows
bars for each of the conducted workout. The heart-rate and
the activity levels are shown in the two consecutive charts as
stacked area-charts. Color in theses charts correspond to low
(pale) to high levels (intensive colors).

Fig. 2. Time-series visualization of fitbit dataset in a Jupyter notebook.

The notebook is divided into three parts. First, the user is
required to load the pandas library together with our python
wrapper for the visualization called timevis. Second, the user
has to load the data in to pandas’ data-frame using the appro-
priate data format and source for the import. Third, the user
has to configure the charts and define the time attribute of
the data. In the current example, we simplified the data dur-
ing preprocessing, to easier accommodate for stacked charts.
This step can of course be conducted within the configuration
as described previously.

The results as shown on the charts are somewhat expected,
but contain some interesting events. It is clearly visible that
the data was obtained by a highly active person with periodic
and consistent activity, indicated by dominant intensive colors.
As typical for sporty people, heart-rate and activity levels go
hand-in-hand, almost parallel. Also the values show consis-
tently high activity levels, and high heart-rate levels, which
are expected when data is obtained mainly during workouts.
However, at several occasions, heart-rate is significantly low,
but activity level is very high. We inquired further what type of
activity would result in such a pattern. Activity levels combine
several measurements together into a higher level concept,
not just heart-rate. In our case, this pattern was due to Yoga
and Pilates that did not raise heart-rate so much, but due to
the movements of the arm are captured as high activity.
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