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Fig. 1. Multivariate visualization of longitudinal clinical data related to diabetes, with a selected group of patients highlighted in blue.
1) Scatter plot of features extracted from hemoglobin A1c (HbA1c) values over time for each patient, here showing on the y-axis the
slope of a linear regression line fit to the values, and on the x-axis the value mean. 2) Parallel coordinates visualization of multiple
temporal features. 3) Hexagonal bin visualization showing the distribution of HbA1c values over time. 4) Icicle plot visualization of
ICD-9 diagnosis codes. 5) Parallel sets visualization of demographic data.

Abstract— Identifying different patterns in longitudinal data (e.g. in laboratory values over time) related to a certain disease and
associating them with different outcomes can be an important factor in delivering improved patient-specific health care. Visualization is
often used to help understand complex temporal patterns, however the effectiveness of many temporal visualization techniques is
compromised when dealing with temporal data from large numbers of individuals. We present work in progress on a visualization tool
for exploring trajectories in longitudinal clinical data and their relationships to other disease factors. Linked views of multivariate features
calculated from the longitudinal data, dynamically aggregated longitudinal data, diagnoses, and demographic data are presented,
enabling the user to explore the data and identify potential relationships between temporal patterns, diagnoses, and demographics. We
describe the various feature of this tool, demonstrate its application to patients diagnosed with diabetes, and discuss future work.

Index Terms—Temporal visualization, multivariate visualization, longitudinal data, human computer interaction, electronic health
records.

1 INTRODUCTION

The increasing adoption of electronic health records (EHRs) provides
ever-growing sets of rich data that can be analyzed to provide new
clinical knowledge and enable more effective health care [7, 17, 19].
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Specifically, longitudinal clinical data, such as multiple laboratory val-
ues taken at discrete points over time, related to a given disease can
help define different temporal trajectories corresponding to different
disease progressions. Our hypothesis is that identifying these disease
trajectories and their relationships to other factors, such as comorbidi-
ties or demographic data, can help define different subpopulations of a
disease that may benefit from different treatments.

Visualization is a tool often used to help analyze longitudinal data.
However, the effectiveness of many temporal visualization techniques is
compromised when dealing with data from large cohorts. For example,
simple line graphs of data for thousands, or tens of thousands, of
patients can result in overplotting, impeding the interpretation of, and
identification and selection of individuals with, temporal characteristics
of interest.



We are therefore developing a visualization tool to enable exploratory
visual analysis of longitudinal clinical data for large cohorts of patients
that enables the user to identify and select temporal patterns of interest,
and see the relationship of these patterns to other clinical data (Fig. 1).
We demonstrate the application of this tool to a cohort of 1456 patients
diagnosed with diabetes. The primary features of the tool are:

• Multivariate visualizations of features extracted from longitudinal
clinical data, enabling the selection of patient groups based on
features related to the numerical values of selected lab tests and
their distribution in time.

• A visualization of the temporal distribution of the longitudinal
data using a 2D binning approach, with optional links between
bins to enable direct visualization of temporal patterns.

• Visualizations of diagnoses and demographic data, showing the
overall population distribution and concentration of selected pa-
tients within each visualization element.

• Linked selection and visualization across all views of the data.

Our tool contains five views of the data, with linked selection across
all five views. A scatter plot (Fig. 1-1) and parallel-coordinates plot
(Fig. 1-2) provide multivariate visualizations of multiple descriptive
features extracted from the longitudinal data, enabling the visualization
of relationships between features, and the selection of individuals with
certain characteristics. Descriptive features of values (e.g. mean value)
and intervals (e.g. maximum period between values) are available.
A hexagonal binning visualization (Fig. 1-3) provides an aggregated
visualization of the temporal distribution of data points. An icicle plot
varient (Fig. 1-4) and a parallel-sets visualization (Fig. 1-5) provide
visualizations of diagnoses and demographic data respectively.

In the remainder of the paper we discuss relevant previous work
in visualizing longitudinal data (Sect. 2), provide a brief overview of
our current dataset (Sect. 3), describe the visualization tool and its
constituent views in more detail (Sect. 4), and discuss future work
(Sect. 5).

2 PREVIOUS WORK

Javed et al. [12] compared the efficacy of various visualization tech-
niques for multiple time series applied to general visualization tasks,
including standard line graphs, horizon graphs [6, 8, 16], and small
multiples [18], although they considered only relatively small numbers
of time series. Previous work has identified some of the challenges
in the visual analysis of time-oriented data in the healthcare domain,
including issues related to scale, complexity, and interaction [1]. Vari-
ous temporal visualizations of health-related data effectively display
sequences of discrete events (e.g. [15,20]), however they do not directly
address visualizing continuously-valued time-series data at variable
intervals, which is our focus. Related previous work has explored the
visualization of longitudinal data related to diabetes [2, 9], both of
which employee regular sampling and categorization to enable aggre-
gation and display of large amounts of data, at the expense of losing
some information. We hypothesize that temporal patterns of the inter-
vals between lab values may be useful in categorizing different patient
groups, so have developed multivariate visualizations to enable the user
to select groups based in part on this information.

3 DATA DESCRIPTION

The longitudinal data are hemoglobin A1c (HbA1c) values from 1456
patients diagnosed with diabetes, with a total of 27,187 values, or
roughly 18 values per patient. HbA1c is a clinical indicator of diabetes
control, with higher values related to poorer control. We therefore use
HbA1c as a proxy for the temporal trajectory of the disease. Due to
variability in the timing of disease diagnosis with respect to disease
onset and progression, we have restricted our patient population to those
that have died, and aligned the temporal data relative to date of death.
Data for up to 16 years prior to death is present. International Statistical
Classification of Diseases and Related Health Problems (ICD)-9 codes
and demographic data (age at death, gender, and race) are also included.

Fig. 2. Visualization with no selection, showing the full patient population
in gray.

Fig. 3. Scatter plot (left) and parallel coordinates (right), highlighting all
patients with a relatively high median interval between HbA1c readings.

4 VISUALIZATIONS

Our visualization tool is written using D3 [4]. Interactive selection is
linked across all views, with selected data represented in blue. Fig. 2
shows the visualization prior to any selection, showing the overall
population. A global filter on the number of HbA1c values present per
patient can be used to restrict the visualization to only show patients
with a certain amount of data. Information on the different views is
provided in the following sections.

4.1 Multivariate Temporal Features
To facilitate the selection of patients whose disease trajectories share
certain characteristics, we calculate a suite of features (statistical de-
scriptors, linear regression values, etc.) on the HbA1c values them-
selves, and the intervals between data points. We use a multivariate
scatter plot and a parallel coordinates [11] visualization1to visualize
and interact with these features (Fig. 3), noting that prior work has
shown the effectiveness of combining these two types of visualizations
in different ways [3, 10, 21]. The user can select which features are
mapped to the two axes of the scatter plot, and optionally map other
features to point size and opacity. A rectangular selection box can be
used to select points of interest. Selection in the parallel coordinates
plot is performed by brushing on each axis independently. In practice,
the parallel coordinates plot provides a good overview of how the cur-
rent selection is distributed across all of the calculated features, while
the scatter plot provides a more focused view of features of interest.

4.2 Longitudinal Data
Due to the large amount of data being visualized we employ a hexagonal
binning approach [5], providing a 2D histogram that directly visualizes
the distribution of HbA1c values over time and improves legibility and
performance over individual point- or line-based techniques (Fig. 4).
The population density of lab values in each hexagonal bin is mapped
to grayscale, with darker indicating more values present. The relative
density for the current selection is represented by blue hexagons, with
density mapped to size. Dashed horizontal lines represent important
clinical classifications: normal < 5.7 ≤ borderline < 6.5 ≤ controlled
< 8.0 ≤ uncontrolled. The user can select individual bins or groups of
bins, and control the bin size for aggregating data. Links connecting
bins can also be shown, which can be useful for comparing small groups
(Fig. 5).

1From: https://github.com/syntagmatic/parallel-coordinates

https://github.com/syntagmatic/parallel-coordinates


Fig. 4. Hexagonal binning visualization of the temporal distribution of
HbA1c values over time. Selected in blue is the distribution of HbA1c
values for all patients in their 40s (top) vs. their 90s (bottom) at death,
revealing a much greater concentration of high HbA1c values over time
for those in their 40s.

Fig. 5. Links showing trajectories for individual patients.

4.3 Diagnosis Data
ICD-9 codes in our data are organized into a hierarchy with category,
subcategory, and diagnosis. We display them with an icicle plot [14]
variant which maps diagnosis prevalence to length, width, and intensity
(Fig. 6). Initially the overall population prevalences are displayed. Any
icicle section can be clicked to select all patients with that diagno-
sis. Upon selection of a group of patients from any of the views, the
same icicle plot structure is maintained to enable ease of comparison,
however length is mapped to prevalence within the selection. An auto-
complete text-entry field enables quick searching for specific diagnoses,
subcategories, or categories. Mouse-over of any icicle when selected
enables direct comparison with the overall population prevalence via
rectangles with black outlines.

4.4 Demographic Data
To display the available demographic data–age at death, gender, and
race–we use a parallel sets [13] visualization2. Initially each axis
shows the distribution of categories for each demographic dimension,
and ribbons show the different combinations of categories across di-
mensions. Dimensions and categories can be reordered interactively,
and categories and ribbons can be selected to highlight all patients in
the selected group. Upon selection of a group of patients from any of
the views, the same parallel sets structure is maintained to enable ease
of comparison, however blue bars for each category, and a light gray
to blue color map for each ribbon, are used to convey the prevalence
of the respective category or category combination within the selected
group (Fig. 7).

5 DISCUSSION AND FUTURE WORK

Although still a work in progress, use of our tool to explore longitudinal
clinical data in diabetic patients has produced some promising initial
results. For example, Fig. 8 shows a comparison of a group of patients
(group a) whose first and last HbA1c values were high (> 10 in both
cases) to a group of patients (group b) whose first HbA1c values had
a comparable distribution, but whose last values before death were
considerably lower (< 6), selected using the scatter plot view (Fig. 8-
1). The longitudinal distribution visualization shows a general trend

2Adapted from https://github.com/jasondavies/d3-parsets

Fig. 6. Comparison of the prevalence of different diagnoses for patients
with a long median interval between HbA1c readings (top) vs. a short
median interval (bottom), selected using the scatter plot view (left). The
diagnosis prevalences shown in the icicle plot view (right) are noticeably
higher for a number of diagnoses in the bottom image, such as those
related to certain mental disorders (highlighted in black).

Fig. 7. Selecting all patients with a median HbA1c value ≥ 10 in the
scatter plot (left) reveals a high proportion (55%) of black or African
American females in this group, as shown in the parallel sets visualization
(right).

toward improved control for group b (Fig. 8-2), however comparing
the icicle plots shows a noticeable increase in the prevalence of many
diagnoses for group b compared to group a (Fig. 8-3). This observation
is somewhat counter-intuitive, as improved diabetes control is generally
thought to lead to fewer complications. The parallel sets view shows
some similarities, primarily with respect to race, and some differences,
primarily with respect to gender and age, between the two groups
(Fig. 8-4).

We have identified a number of avenues for future work. Improving
selection via more advanced brushing techniques and the ability to
apply set operations to the current selection will enable more fine-tuned
exploration of the data. We are also investigating techniques for the
selection and visualization of multiple groups to enable improved com-
parison between groups. Temporal information on dates of diagnoses
is not currently integrated into our tool. We will explore different tem-
poral event-based visualizations to incorporate these data and combine
them with the temporal data from the HbA1c values. Another avenue
for future work will involve investigating different ways of aligning the
temporal data such that data from living patients can be included, along
with other potential sources such as genetic or environmental data. In-
corporating more temporal featurs, and robust statistical methods for
determining the significance of perceived relationships in the data, will
also be explored.

https://github.com/jasondavies/d3-parsets


Fig. 8. Comparison of two groups, a and b, of selected patients. 1) The scatter plot is used to select patients with relatively high first (y-axis) and last
(x-axis) HbA1c values (a) and patients with comparable first values, but low last values (b). 2) The longitudinal visualization shows a general trend
toward improved control for group b vs group a. 3) The icicle plot visualization shows a noticeable increase in the prevalence of many diagnoses for
group b vs. group a. 4) The parallel sets visualization shows demographic similarities and differences between the groups.
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