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Abstract— The present paper asks how can visualization help data scientists make sense of event sequences, and makes three
main contributions. The first is a research agenda, which we divide into methods for presentation, interaction & computation, and
scale-up. Second, we introduce the concept of Event Maps to help with scale-up, and illustrate coarse-, medium- and fine-grained
Event Maps with electronic health record (EHR) data for prostate cancer. Third, in an experiment we investigated participants’ ability
to judge the similarity of event sequences. Contrary to previous research into categorical data, color and shape were better than
position for encoding event type. However, even with simple sequences (5 events of 3 types in the target sequence), participants
only got 88% correct despite averaging 7.4 seconds to respond. This indicates that simple visualization techniques are not effective.
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INTRODUCTION

The broad field of longitudinal data analysis includes situations
where users are concerned with the sequence (the order) in which
events (categorical data) take place. Such event sequence data are
common in domains such as health, where the events may be stages
in a patient’s care [1] or procedures, diagnoses and prescriptions that
are recorded in the patient’s EHRs.

The present paper addresses the general question of how can
visualization help people make sense of event sequences, and makes
three main contributions. First, we outline an agenda of research that
is needed to design effective visualizations for event sequences.
Second, we introduce the concept of Event Maps to help with scale-
up. Third, we describe an exploratory experiment that investigated
participants’ ability to judge the similarity of event sequences.

1 RELATED WORK

There are two distinct styles for visualizing event sequences, as
demonstrated by existing systems. One displays a sequence as a set
of symbols (e.g., Lifelines2 [2] and EventFlow [3]). This allows
users to identify the events in the sequence just by looking at the
visualization, but users need to compare the symbols to judge the
similarity of sequences. The other style presents multiple sequences
as a network (e.g., DecisionFlow [4] and CAVA [5]), so users have
to interact to identify the events in a given sequence but the
similarity of sequences is indicated by shared nodes and links.

With both styles, the number of sequences that may be usefully
displayed is often far fewer than the number of separate sequences
that are in the underlying data. However, providing a suite of
interactive filtering and transformation functionality allows users to
substantially reduce the number of sequences to be visualized [3, 6].
Alternatively, data mining or machine learning techniques [7] may
be used to aggregate a large number of sequences into a smaller
number that are suitable for visualization.

The appearance of an event sequence visualization is dictated by
the visual encodings that are used. Although there is a large design
space of possibilities, this may be rationalized using the results of
experiments that rank encoding channels for different data types.
Recent experiments indicate that the position, color or shape channel
are the most effective channels for categorical data, whereas
position, color or size should be used for ordinal data [8].

Channels such as color or shape offer many different design
options. For categorical data, a practical limit is 12 shapes. A similar
limit (6 – 12) is suggested for color, but that is reduced to only 3 – 4
for a color- deficient audience [9]. Recent guidance about which
shapes and colors to use is provided by [10].

2 RESEARCH AGENDA

Previous research that involved clinicians or health researchers
provides several use cases for event sequence visualization. These
use cases have aims that include stratifying patients into groups that
have similar characteristics [11], understanding the cause of
bottlenecks in care provision [1], checking adherence to planned care
pathways [3], identifying a patient cohort with certain characteristics
[5], and predicting patient outcomes [4].

Previous research has provided fine-grained mappings between
EHR systems and user interaction [12]. By contrast, we have
identified four fundamental tasks that are orthogonal to the use cases
and which visualization is well-placed to support. The tasks are:
a) Simplify sequence (remove or aggregate events to reduce the

number that are in a sequence).
b) Find a subsequence (a specific pattern of events in a sequence).
c) Understand longitudinal changes (changes in the pattern from

one part of a sequence to another).
d) Compare sequences (similarities and differences between

sequences).

In their purest form the first three tasks only need to involve a
single sequence although, in practice, real applications will involve
multiple sequences. The fourth task concerns between-sequence
differences and, therefore, always involves multiple sequences.

Systems such as Lifelines2 [2] and DecisionFlow [4] have been
developed from an application perspective, with specific
visualization, interaction and computational techniques chosen from
a large design space of possibilities. However, there is a considerable
gulf between design decisions taken for those systems and existing
research into the fundamentals of visualization ([8, 10]). The
following sections bridge that gulf by laying out a research agenda
for the four fundamental tasks that are described above.
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2.1 Presentation

The first things that we need to know is how visual encoding affects
users’ ability to perform the above task, and when do basic
approaches (e.g., a left-justified sequence of symbols ) break down in
terms of the number of event types, and the number and length of
sequences. This will tell us when more sophisticated approaches are
needed, and allow unpromising encodings to be ruled out so that
others may be studied in greater detail.

The experiment described in §3 makes a first step in that
research. Complementary research could use a staircase
methodology (e.g., [13]) to determine thresholds at which users’
performance becomes unsatisfactory for a given encoding.

Similar methods could be adopted to investigate the ‘find a
subsequence’ and ‘understand longitudinal changes’ tasks. However,
we exclude the ‘simplify sequence’ task from this part of the
research agenda, because it either requires users to interact or
computation to be performed (see Section 2.2).

2.2 Interaction and Computation

Systems such as EventFlow [3] and DecisionFlow [4] provide a
visual analytics capability, allowing users to interact and perform on-
the-fly computations. Evaluations showed that this allowed users to
analyze sequences for a few thousand patients and types of event.

Building on research into analysis strategies [6], we subdivide
interaction and computation according to whether given functionality
changes the presentation of existing data or creates new data (see
Table 1). For all four combinations of interaction vs. computation
and presentation vs. new data there is functionality that visualization
systems could provide to aid users in the analysis of event sequences.

Table 1. Interaction and computation functionality that changes how
existing data are presented vs. creates new data.

Change Interaction Computation

Presentation Filter
Level of detail

Sort
Align

New data Coalesce
Convert

Associate

Users may interactively filter data by selecting certain records,
event types and/or times (strategies S1, S2 and S5-8 in [6]).
Graphical interfaces make it straightforward to define simple filter
criteria (e.g., records that include specific event types), but research
is needed to develop interfaces that allow users to easily specify
complex criteria (e.g., multiple combinations of events) that would
require an excessive number of clicks with today’s interfaces. Users
may also interactively change the level of detail of events (see S9 in
[6]), e.g., by exploiting the hierarchical coding schemes.

Other data presentation functionality includes sorting and
alignment, which may be invoked by a user interacting but require
non-trivial computation to achieve. Sorting can simplify a
visualization to reveal patterns to users [14]. Alignment may be
performed manually (e.g., by specifying a common reference time;
see S4 in [6]) or computationally with local or global methods from
bioinformatics. A research priority is to investigate the effect of
existing sorting and alignment methods on the ‘find a subsequence’,
‘longitudinal change’ and ‘compare sequences’ tasks. That research
could be performed via experiments similar to those suggested in
§2.1 or technical evaluations.

Coalescing repeated events, converting complex events into a
single event, and aggregating events over time all: (a) involve the
creation of new data, and (b) are likely to be interactive because
users need to provide guidance (see S10-13 in [6]). In common with
the presentation/interaction functionality (see above), the main need
is for research into low-cost interaction methods.

A high-level goal in most of the above use cases is to associate
particular sequences of events with certain groups of patients or
treatment outcomes (see S3 in [6]). While some expert guidance is
essential, substantial computation is necessary to overcome the scale

and complexity of the data. For this, an important research area is the
design and evaluation of similarity metrics for event sequences, and
their validation for each of the four fundamental tasks.

2.3 Scale-up

Current visual analytic systems have only been used to analyze
datasets that contain a few thousand patients and event types (see
Section 2.2), which falls far short of the quantity of data that is
analyzed in some major studies (e.g., 6 million patients in [15]). We
propose two approaches that may help to scale-up event sequence
visualization and visual analytics techniques for such studies.

The first involves a concept that we term Event Maps, and draws
inspiration from the Quality Maps for visualizing data quality that
was proposed by Ward et al. [16]. Event Maps make event types the
primary entity in visualizations, so users may see overviews of
patterns in event sequence data. We illustrate the concept with a
prostate cancer example that is drawn from our work with clinicians
from the Universitätsklinikum Hamburg-Eppendorf (UKE) [7, 11].

The UKE data comprises 1940 patients and ten event types. One
high-level Event Map simply shows the frequency of each event
type, of which five are common, four are rare, and one (H) is in-
between (Fig 1a). Another is a histogram showing the number of
events for every sequence (Fig 1b).

(a) (b)

Fig. 1. Event Maps showing: (a) the frequency of each event type, and
(b) the number of event types per patient.

Other Event Maps may provide more detail by showing the
frequency distribution of events types across sequences (Fig 2a) or of
a given event type following another (Fig 2b). This reveals clusters
of event types, and indicates that sequences often start with the
events B/R/X, with H/F/M in the middle, and C/D at the end. H is
unusual because it occurs equally often at the beginning and in the
middle (after B and X, respectively).

(a) (b)

Fig. 2. Event Maps showing the percentage of times each event type:
(a) occurs at each position in a sequence, and (b) follows each other
event type.



Fine-grained Event Maps help users to understand unusual
sequences in the context of those that are common, by showing the
percentage of times that each sequence occurs. E.g., sequences may
be ordered to group together permutations that contain the same
combination of event types (Fig 3).

Fig. 3. Fine-grained Event Map showing the percentage of
occurrences of each sequence, using horizontal lines to group
sequences that contain the same combination of event types.

The second approach is to exploit visualization in the design and
optimization of processing pipelines for event sequence data, rather
than directly using visualization to gain new insights [17]. This could
help users to design models to quantify the similarity of sequences,
understand the sensitivity of those models to parameters and
assumptions, and validate the models. In turn this would: (a) allow a
step-change in the size/complexity of the sequences that it is feasible
for users to analyze, and (b) help users to choose a level of detail that
balanced the preservation of details against the suppression of noise.

3 EXPERIMENT

The experiment involved presenting a series of images to that
contained a target sequence and two choices. A participant had to
choose which choice was more similar to the target sequence. We
used a within participants design with three factors: visual encoding
(color vs. shape vs. position), edit type (insert vs. delete vs. substitute
vs. insert & delete vs. insert & substitute vs. delete & substitute), and
Levenshtein distance between the target and correct choice (2 vs. 3).

3.1 Method

3.1.1 Participants

Thirteen individuals (8 men & 1 woman aged 25 – 45 years, 4
declined to give gender or age). All the participants gave informed

consent and were paid for their participation. The study was
approved by the Ethics Committee at the first author’s institution.

3.1.2 Materials

The experiment was delivered via a web browser using custom-
developed Java software. Examples of the trials are shown in Fig 4.
The colors and shapes were chosen from a ColorBrewer colorblind-
safe palate, and the reordered list of [10], respectively. The
instruction on each screen was “Please click on the sequence (A or
B) that is most similar to the Target sequence?”

(a)

(b)

(c)

Fig. 4. Examples of the trials: (a) color encoding and delete edit type,
(b) shape encoding and substitute edit type, and (c) position encoding
and insert edit type.

3.1.3 Procedure

The experiment was divided into two parts: an introduction and the
test. In the introduction, a series of slides were used to explain the
task, the three types of encoding, and the three basic edit types
(insert vs. delete vs. substitute). Then slides were used to present six
practice trials to a participant. There was one trial for each of the six
edit types (see above), two of which were presented with each
encoding. Once the participant had chosen the sequence that was
more similar to the target sequence, the correct answer was
displayed, together with the edits that needed to be made to change
the answer into the target.

The test involved five blocks of trials, with 36 trials in each block
(one trial for each combination of encoding, edit type and
Levenshtein distance). The trials were presented in a random order.
A participant indicated their choice by clicking inside the box that
surrounded sequence A or B, which caused the choice and the
participant’s response time to be recorded, and the screen to be
blanked for 1 second before the next trial was displayed. To reduce
fatigue, there was a minimum of a 30 seconds pause between blocks.

3.2 Results and Discussion

There was a significant correlation between the time that participants
took to complete the whole experiment and the percentage of trials
that they got correct (r(13) = 0.76, p < .01). Some participants
seemed to make fast instinctive judgments whereas others carefully
compared the sequences, which we characterize as ‘perceptually’ and
‘cognitively’ driven strategies, respectively. Four participants got
fewer than 50% of trials correct (chance level) in at least 1 block and
were excluded from the analyses of variance (ANOVAs) that follow.



In the ANOVAs the response time data were normalized using a
log10 transformation. A † after a p value indicates that the
Greenhouse-Geisser correction for sphericity was applied.

To check for learning and fatigue effects, the response time and
percentage of correct trials data were analyzed using ANOVAs that
treated block as a repeated measure. There were no significant
effects, so the data for all blocks were combined. Overall the average
was a 7.4 s response time and 88% of trials correct.

A three-way repeated measures ANOVA showed main effects of
percentage of correct trials for all of the independent variables (Fig
5): visual encoding (F(2,16) = 4.44, p < .05), edit type (F(5, 40) =
2.81, p < .05), and Levenshtein distance (F(1,8) = 5.21, p =.05).

A three-way repeated measures ANOVA showed a similar
pattern of results for response time (Fig 5): visual encoding (F(2,16)
= 3.58, p = .05), edit type (F(2,17) = 25.74, p < .01†), and
Levenshtein distance (F(1,8) = 10.68, p < .05). There was also a
significant edit type × distance interaction (F(5,40) = 6.68, p < .01).

For percentage correct and response time, position was the worst-
performing encoding, which is a notable because other research has
ranked it top for categorical data [8]. Delete stood out as the best-
performing event type, and participants performed better with the
larger Levenshtein distance, probably because that meant the
‘wrong’ answer only had one event. By contrast, and as expected,
participants performed better with the smaller distance for the other
five event types. This contrast caused the significant interaction.

Delete vs. insert are opposite types of event, so the results inform
us about the effect of sequence length. As length increased
participants performed worse, from delete/distance=3 (95% correct)
to insert/distance=3 (81% correct). These correspond to the ‘wrong’
answer having one and nine events, respectively. It also is notable
that performance on insert and substitute trials was similar to trials
that involved pairs of edit types (e.g., insert & delete).

Fig. 5. Mean response time and % of correct trials for the encodings,
edit types (I = insert, D = delete, S = substitute) and Levenshtein
distances (d=2, d=3). Error bars show standard error of the mean.

4 CONCLUSION

Within the broad field of temporal data, this paper focuses on event
sequences, as are common in domains such as health. We propose a
research agenda, and illustrate five types of Event Map that make
event types the primary entity in visualizations and are designed to
provide a step-change in the scale of data that users can analyze.

We also conducted an exploratory experiment to investigate
participants’ ability to judge the similarity of event sequences. Color
and shape were better than position for encoding event type but, even
though participants took a long time to make the judgments (7.4 s),
they only got 88% correct. This indicates the need for more effective
visualization techniques (see Research Agenda), particularly as the
sequences were simpler (5 events of 3 types in the target) than those

portrayed in EHR systems (e.g., [2-5]). Our results also raise the
question of how correctly, and hence safely, are users judging event
sequence similarity with today’s systems?
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