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Abstract—Integrating frequent pattern mining with interactive visualization for temporal event sequence analysis poses many interesting
research questions and challenges. We review and reflect on some of these challenges based on our experiences working on event
sequence data from two domains: web analytics and application logs. These challenges can be organized using a three-stage
framework: pattern mining, pattern pruning and interactive visualization.
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1 INTRODUCTION

Temporal event sequence data is pervasive in many application do-
mains, including electronic commerce and digital marketing [10, 20],
user workflow and behavior analysis [9, 19], online education [15, 17]
and healthcare [12, 13]. Effective analysis of such data is challenging
due to two main factors: the volume and complexity of the data, and the
variety of user tasks and domain contexts. Real-world event sequences
can be long and heterogeneous. The constituent events are multivariate
and can have high cardinality [10, 12]. Traditional visualization and
interaction techniques often fail to handle such data satisfactorily. Ma-
chine learning and data mining approaches are more scalable, but have
paid relatively little attention to providing human-centered analysis
methods and tools.

The ultimate solution to the problem of temporal and sequential event
analysis will be a synthesis of research from relevant areas such as data
management, data mining, visualization and human-computer interac-
tion. In recent years, we have seen research works that seek to integrate
sequential pattern mining with interactive visualization [8, 10, 13] and
these approaches look promising. There are still many questions that
remain unexplored and we take the position that these questions can
be systematically organized in a framework consisting of three com-
ponents: pattern mining, pattern pruning and interactive visualization
design. Using this framework, we reflect on our experiences in work-
ing with event sequence data from two domains (web clickstreams
and application logs from Adobe Photoshop), and discuss research
questions at the intersection of human-centered sequence mining and
visualization.

2 PATTERN MINING: WHAT TYPES OF PATTERNS TO EX-
TRACT?

There are many different types of high-level structures we can extract
from temporal event sequences. From a human-centered perspective,
interpretability is a key measure when deciding which type to use.
Model-based machine learning approaches such as Support Vector
Machines are effective for prediction, but such models are usually
difficult to understand for human users. Frequent pattern mining, on
the other hand, offers a promising approach that provides easy-to-
understand patterns for data exploration and analysis.

Research work on frequent pattern mining is extensive. Generally
speaking, a taxonomy of frequent patterns has the following dimen-
sions:
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1. Order of Events When the extracted pattern is a set of events
and the order of these events in the original sequences is not preserved,
the pattern is an itemset. When we do preserve the order, the pattern is
a sequential pattern.

2. Containment Two central concepts in frequent pattern mining
are support and containment [1]. The support of a pattern is the number
(or percentage) of input sequences matching that pattern. One pattern
with a lower support may contain another pattern with a higher support.
Given a threshold support s, a frequent sequential pattern is a sequence
of events present in at least s input sequences. A closed sequential
pattern is a frequent sequential pattern which includes as many events
as possible without compromising the number of supported sequences.
The definition of a maximal sequential pattern is even stricter: no other
sequential patterns should contain a maximal pattern given s. Similarly,
itemsets can be categorized as frequent itemsets, closed itemsets and
maximal itemsets. Table 1 shows examples of these kinds of patterns.

3. Spatial Cohesion The distance between two adjacent events in a
pattern may vary in the matching input sequences. At one extreme, an
n-gram is a frequent sequential pattern consisting of contiguous events
found in the input sequences. An episode is a frequent sequential
pattern with events appearing compactly (within small window) in the
matching sequences. A cohesive itemset [14] is similar except that the
order of events is not enforced. In general, a frequent pattern does not
have requirements on spatial cohesion.

Table 1: Examples of Frequent patterns

(a) Input Sequences

ID Sequences
S1 ACD
S2 BCE
S3 EABC
S4 BE
S5 EBAC

(b) Patterns with >= 40% Support. For cohesive itemsets and episodes, we
used the ratio of pattern length and window length as the cohesion parameter,
and set the threshold value to 1.

Pattern Type Patterns
Itemset {A}, {B}, {C}, {E}, {A, B}, {A, C}, {A, E},

{B, C}, {B, E}, {C, E}, {A, B, C}, {A, B, E},
{A, C, E}, {B, C, E}, {A, B, C, E}

Closed Itemset {C}, {A, C}, {B, E}, {B, C, E}, {A, B, C, E}
Maximal Itemset {A, B, C, E}
Cohesive Itemset {A, B}, {A, C}, {B, C}, {B, E}, {A, B, C},

{A, B, E}, {A, B, C, E}
Sequential Pattern A, B, C, E, AC, BC, BE, EA, EB, EC

2-gram BC
Episode A, B, C, E, AC, BC



Fig. 1: Statistics on the datasets we have analyzed and the maximal sequential patterns extracted from these datasets. The patterns are computed
on a quad-core 2.7 GHz MacBook Pro (OS X 10.11.5) with per-core 256K L2 caches, shared 6MB L3 cache and 16GB RAM.

In addition to these three dimensions, a pattern can also be periodic
[5], multi-dimensional [6] or emerging across datasets [2].

With so many variations, the decision on what types of patterns to
extract depends on two main factors: user task and domain context.
When we worked with web clickstream analysts, their main task was to
identify common visitor paths [10]. In this context, the order of pages
navigated is important and must be preserved. As a result, we chose
a type of sequential pattern: maximal sequential pattern. When we
talked to product managers and machine learning scientists who work
with Photoshop log data, however, their main concern was to break
down event sequences into meaningful groups of actions that might
correspond to actual Photoshop user tasks. Since an image editing task
can be done in a variety of ways using the same set of operations, the
order of events is not important. In addition, it does not make sense
for the set of events in a user task to be spatially distributed across a
long sequence. We thus chose to mine spatially cohesive itemsets in
this case.

3 PATTERN PRUNING: WHAT PATTERNS TO SHOW?
Given that we have chosen a type of pattern to compute, the number
of patterns found in a dataset can be overwhelming. For example, we
computed maximal sequential patterns on seven different datasets in
our previous work [10], and the results are shown in Figure 1. Even
though maximal sequential pattern is a much stricter definition than
other types of patterns such as frequent itemsets, the number of patterns
extracted can be greater than the input sequences for some datasets.
Presenting all these patterns to the users is not an advisable idea.

To prune the number of patterns down to a manageable size, various
techniques can be used. Peekquence [8] allows users to sort and filter
patterns based on pattern attributes such as pattern length and event
variability. Automatic approaches that discard patterns based on overlap
between sequences in the support sets have also been proposed [10].

Ultimately, we would like to present our users patterns that are inter-
esting and insightful. Based on our conversation with analysts working
on web clickstream data as well as log data, several characteristics stand
out as important measures of interestingness. First, longer patterns are
usually considered more interesting, because they contain more infor-
mation. Second, the size of the input sequence dataset plays a role.
When computing sequential patterns for a large dataset spanning days
for all the visitors, the extracted patterns are often not very interesting.
However, when we segment the dataset by user groups or other mean-
ingful attributes, interesting patterns begin to surface. This observation
is contrary to the belief that we should start with an overview of the
entire dataset. Carefully segmenting the dataset seems a prerequisite to
effective pattern mining. Finally, the length of input sequences affects
the interestingness of mined pattern as well. Some Photoshop users
leave their applications open for days. If we group the events by user
ID, the resulting sequences can be extremely long and the frequent
patterns are not that meaningful. When we divide a user sequence into
sessions using timestamps, the extracted patterns tend to make more
sense.

Since the concept of interestingness is central to the question “What
patterns should we show to the users?”, we need a systematic approach
that tries to quantify and predict the interestingness of sequential pat-
terns. Related previous work has explored this problem from a data

mining perspective. Freitas argues that the term interestingness is
related to several properties such as novelty, surprisingness and useful-
ness [3]. Silberschatz and Tuzhilin note that “a pattern is interesting
when the user can do something about it” [18]. In other words, interest-
ingness and actionability are often related. Measures of interestingness
may be objective or subjective [3]. Objective approaches try to charac-
terize interestingness as a formal, inherent property of the pattern itself.
Examples of objective measures are often based on information theory.
In comparison, subjective measures of interestingness assume that the
interestingness of a pattern is relative to a belief system [18]. An expert
user may find less patterns to be surprising than a novice.

Applying these concepts to temporal event sequence analysis, we
face the research questions of devising objective and subjective mea-
sures of interestingness, surprisingness and actionability for frequent
patterns. In particular, a data-driven approach to modeling and pre-
dicting interestingness seems promising. For a given set of computed
patterns, we can ask users to rate the interestingness of each pattern,
and build models that use pattern features such as event names and
variability to predict interestingness scores. It might make sense to
group users by their expertise so that we take into consideration of their
background and prior knowledge.

4 INTERACTIVE VISUALIZATION: HOW TO SHOW PATTERNS
AND SEQUENCES?

Interactive visualizations of frequent patterns and input sequences have
potentially two goals: to understand and debug frequent pattern mining
algorithms, and to analyze temporal event sequence datasets for knowl-
edge discovery. Most of the visual analytic work in this space seems to
be focusing on the second use case.

Research work on sequence visualization is extensive, investigating
visual representations ranging from flow diagrams [4, 21] to tree visu-
alizations [12, 22]. When faced with large, high-dimensional datasets,
users can start with a complex visualization and simplify it by specify-
ing patterns such as motifs and subsequences [12]. Alternatively, users
can also start with an empty canvas and incrementally build visualiza-
tions by querying patterns in terms of milestone events [4, 9, 23]. In
these works, patterns are specified by users.

When patterns are automatically mined, we need visualizations that
explain the relationship between the patterns and sequences. Depend-
ing on the type and properties of frequent patterns, we may need to
design different visual representations for the extracted patterns. In
Peekquence [8] and in our work [10], individual patterns are visualized
as separate entities, and it is not very clear how these patterns relate to
each other and fit into a larger picture with the input sequence dataset in
mind. Fp-Viz [7] uses a radial layout to show the hierarchy of frequent
itemsets and this approach may be extended further to organize frequent
patterns in a meaningful overview.

The necessity of visualizing individual sequences in conjunction
with frequent patterns remains unclear. While it is nice to be able to
drill down to individual input sequences and examine the raw data,
often the input dataset is too huge for every input sequence to be
displayed. Sampling techniques for sequences can be useful to decide
what individual sequences to show, if any. Exploring use cases where
the coordination between patterns and sequences seems an interesting
problem to be pursued.



Ultimately, the analysis of temporal event sequence should enable
analysts to answer domain-specific questions they care about. For
example, web clickstream analysts are interested in understanding the
most common paths. In doing so, they hope to understand if there is
an anomaly in the traffic flow, where do visitors drop off, and how
to guide them into a funnel. In the case of anomaly detection, data
becomes more meaningful when the analysts can compare the traffic
pattern across different time periods and user segments. Event sequence
visualization for comparison has been explored in the past [11, 24], but
not extensively in the context of frequent pattern mining.

Finally, while frequent patterns serve as a useful summary of the
dataset, some of these questions may not be adequately answered by
the visualization. To understand why a pattern is present in the dataset,
we may need to collect additional datasets that are orthogonal but
complementary to the input temporal event sequences.

5 CONCLUSION

To support effective analysis of temporal event sequence data, re-
searchers and developers of analytic systems need to make informed
design decisions during the pattern mining, pattern pruning and visual-
ization design stages. We discuss research challenges and opportunities
in each of the stages. This framework is primarily useful for thinking
about issues in combining frequent pattern mining algorithms with visu-
alization interfaces. There are other interesting approaches to temporal
event sequence analysis that we have not addressed in this paper. For
example, research on visualization design might lead to new approaches
on human-centered frequent pattern mining. Visualizations can be com-
bined with machine learning techniques [16] to support mixed-initiative
interfaces for semi-automatic segmentation of event sequences. The
three-stage framework is thus subject to further refinement when new
research questions arise.
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