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Abstract—Many techniques exist to visually represent temporal event sequences. However, few techniques are purposely designed
for direct visual comparison of many (e.g., tens or hundreds) event sequences. This task is important for understanding recurring
patterns, trends, and detecting anomalies, but visual comparison across event sequences is challenging when sequences are not
trivially short. We propose a general framework for visualization of event sequence collections with storylines designed specifically
for this comparison task. Storylines, just like parallel coordinate plots, suffer from usability issues when the number of time windows
is large, so our framework includes a multi-scale technique to transform high temporal resolution event sequence data into a more
appropriate format for storylines. We also built a user interface that supports zooming on the storyline visualization to leverage the
multi-scale representation of the temporal event sequences. We evaluated our tool with a case study on the IEEE VAST Challenge
2014 data which included eliciting feedback from an expert user on our interface.

Index Terms—Storyline visualization, Temporal event sequence, Multi-scale modeling, Layout algorithm, Geo-temporal analysis.

1 INTRODUCTION

Extracting insight about when, how, and why a system is changing
over time is a primary purpose of visual analytics. But what exactly is
change and how should it be communicated to the user? Many tem-
poral visualizations, including visualizations for temporal event se-
quences, rely on time series plots that directly encode the state of the
entities over time. However, storylines show how entities change rel-
ative to each other [11, 15, 16, 18, 21, 22, 24]. Understanding relative
change in temporal event sequences can be helpful for tasks including
identifying cohorts that behave similarly over time, detecting branch-
ing or merging of groups of entities, or spotting patterns of recurrence.
We believe storyline visualization can be an effective technique for
making sense of temporal event sequences.

Storyline visualizations represent entities as lines, with time being
encoded on the horizontal axis; the vertical axis does not directly en-
code any variable. Instead, the vertical axis is used to convey simi-
larity between entities. Storylines encode interaction (e.g., have the
same state at the same time) by drawing entities’ lines close together
during interaction, and farther apart otherwise—storylines convey time-
dependent relationships across temporal event sequences.

While storyline layout algorithms are growing increasingly sophis-
ticated, a the challenges that has not been adequately addressed is how
to effectively draw storylines having many time windows (i.e., high
time resolution). This paper presents two main contributions: 1) a
general approach for transforming high temporal resolution event se-
quences into time-windowed data suitable for storyline visualization;
and 2) a novel multi-stage, multi-objective layout algorithm to deter-
mine the y-coordinate of the storylines.

Our approach, m-SVEN, is designed to address the scalability is-
sues arising when event sequences exhibit high temporal resolution.
We propose the following framework for visualizing collections of
high time resolution temporal event sequences with storylines.

1. Find events: if starting with real-valued feature vectors, quantize
the time series into a temporal event sequence.

2. Find windows: resample temporal event sequences into time
windows.
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3. Find Behaviors: count the events of each type occurring within
each time window.

4. Find Interactions: group together storylines within time win-
dows that have similar behaviors.

The remainder of the paper is structured as follows. After discussing
work related to temporal event sequences and storyline visualization,
we proceed directly to outlining our storyline layout algorithm. Fol-
lowing this, we demonstrate the framework with a case study on the
VAST Challenge 2014. In this case study we discuss how we adapted
these data to our framework, we discuss how we designed the user in-
terface to support the case study, and we present a brief evaluation of
our system attained by soliciting expert feedback.

2 RELATED WORK

Some existing visualization techniques are appropriate for understand-
ing collections of event sequences. Scarf plots [4, 19] and other related
visualizations represent event state with colors, and event sequences as
horizontal rectangular sequence of colors. Multiple scarf plots can be
stacked vertically to support comparison. However, this is difficult
when there are many sequences, or when two sequences are far apart
in the visualization. Dimension reduction techniques such as princi-
pal components analysis, multidimensional scaling, or manifold learn-
ing [23] can be helpful for representing event sequences when events
are modeled by a n-dimensional feature vectors. For example, Bach
et. al. used a two dimensional projection to represent temporal evolu-
tion for time series one at a time [3]. If projected into a 1-dimensional
space, the time-windowed behavior of the event sequence can then be
plotted against time to create a storyline-like visualization [6, 7, 17].
However, visualizations crafted from projected data can be mislead-
ing because points that are nearby in the projection are not necessarily
nearby in the original space [5].

Storylines provide a more abstract but more explicit representa-
tion of relationships over time. This requires partitioning the enti-
ties within each time window into groups referred to as “interaction
sessions” [21, 22]. From this, the visualization is arranged such that
interacting entities form tight groups, and non-interacting entities are
placed further apart. Meaningful distance between lines is explicitly
enforced by the layout algorithm for the entire visualization, rather
than occurring on average, as it does with projected data. This re-
quires a layout algorithm to optimized assumed aesthetic criteria such
as crossings, wiggles, and whitespace [21].

Layouts for storyline visualizations of genealogical data were pro-
duce by restricting the storyline data to tree-like structures [15]. At the



same time, a general purpose algorithm for visualizing software evo-
lution was developed [18]. However, this algorithm relied on a genetic
program to search for candidate layouts, and as a result converged
very slowly. Following this, the most recent general purpose story-
line layout algorithms were developed [16, 21, 22]. These algorithms
converge more quickly but are very complex and rely heavily on con-
strained quadratic programming. An additional contribution from [16]
is the ability to specify hierarchal relationships between entities and
have these enforced in the layout. A fast and incremental storyline lay-
out algorithm was recently developed for streaming data [21]. Much
other work exists leveraging storylines without contributing new lay-
out algorithms—we consider this outside the scope of this review.

3 M-SVEN STORYLINE LAYOUT ALGORITHM

We present a layout algorithm that explicitly optimizes the positions
of the storylines guided by a set of aesthetic criteria. This algorithm is
a refinement of our previous storyline research named SVEN [1, 2].
For storyline visualization, established aesthetic criteria are to re-
duce crossings, wiggles, and whitespace [21], and algorithms for op-
timizing one or more these criteria have been the subject recent re-
search [11, 15, 16, 18, 21, 22, 24]. Because existing algorithms for
storyline visualization were ad hoc, too slow, did not optimize all es-
tablished aesthetic criteria, or required proprietary convex solvers, we
are in the process of refining our own storyline layout algorithm.

Our purpose in designing a new layout algorithm was to enable ren-
dering a storyline visualization of reasonable aesthetic quality at inter-
active speeds to support exploratory visual analytics. Our layout algo-
rithm is a multi-stage multi-objective optimization algorithm; in each
stage a single aesthetic objective is optimized, and the result from the
current stage is respected by the subsequent stages. Wherever possi-
ble, we have attempted to match the subproblems in each stage with
algorithms already existing in the literature. Our algorithm, summa-
rized in Fig. 1 finds the storyline layout by optimizing the aesthetic
objectives in the following order:

1. Crossings: the number of pairs of storylines whose relative order
changes between adjacent time windows,

2. Wiggles: the number of times a storylines’ heights are different
between adjacent time windows, and

3. Whitespace: the vertical distance between adjacent storylines.

A directed acyclic graph Gy, is constructed (see Fig. 1a) to model
the defined interaction sessions. Each vertex uniquely represents the
entities within the same interaction session. Edges between group ver-
tices model flow from one interaction session to another. The weight
of this edge is the number of storylines that flow between the sessions.
Each vertex is assigned to a unique layer corresponding to its time
window, and the order of the vertices within each layer determines the
number of crossings in the layout.

There are several techniques available that minimize the crossings
between vertices within the same layer in a directed acyclic graph
[13]. We first sweep back and forth along the levels in G, to reduce
crossings by sorting vertices within layers using the “median heuris-
tic” [8]. Following this, we find the pair of adjacent vertices within the
same time window that would decrease edge crossings the most when
swapped. This is repeated until no swaps exist that decrease the num-
ber of crossings, which is illustrated in Fig. 1b. After this, the order of
storylines within groups is found in a similar manner.

After the order of the interaction sessions and storylines is deter-
mined, we reduce unnecessary line wiggles by finding a maximal set
of edges in Gy, to align. An edge (u,v) in Gy, contains one or
more storylines moving from group u to group v in adjacent time win-
dows. Given that the order of the storylines was determined in the
previous stage of the algorithm, we can directly determine the ideal
offset between u and v, ignoring all other groups. This is the oft-
set that has the fewest wiggles, or, equivalently, straightens the most
storylines between u and v. We construct the alignment graph Gy;ep,
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Fig. 1: Crossing and wiggle reduction: Vertex size corresponds to
the number of storylines within that interaction session. Between (a)
and (b) the order of vertices in Gyy,,, is changed to reduce crossings.
Wiggles are reduced by selecting a maximal amount of edges in G,y
to align. Red vertices in G, (¢) are equivalent to red edges in G ¢4y,
(d) that have been aligned.

where each vertices in the G;,, Was an edge in Gyy,,. Each ver-
tex (u,v) in Ggyig, is weighted based on the number of storylines that
would be straightened if groups u and v were aligned.

We add edges to Gy, to represent conflicts, illustrated in Fig. 1c.
When an edge is aligned, its endpoints are placed at the same height,
but we must ensure that aligning an edge does not change the order
of the vertices found previously. Only one in- and out-edge can be
aligned per group vertex. If two edges in Gy, cross, only one of
those edges can be aligned. Finding the maximum weighted indepen-
dent set of Gy;gy, is equivalent to finding the largest number of edges
in Gy, to align (see Fig. 1d). Though exact solutions are not found in
polynomial time in the general case, we use a simple greedy algorithm
that produces high quality approximations [20].

The final stage in our layout algorithm is to solve for the y-
coordinates of the groups in a manner that respects the order and align-
ment found in the previous two stages. We construct another directed
acyclic graph G,y pjsespace Whose vertices are the connected components
of the subgraph induced from only the aligned edges found previously



and whose edges enforce the ordering found previously. Layering
Ghitespace Will solve for the y-coordinate of the groups, and subse-
quently the storylines; there are many algorithms to compute layer-
ings for directed acyclic graphs [13]. We solve this layering using the
Network Simplex algorithm [12]. Due to the special structure of the
problem, we found this algorithm to be much faster than off-the-shelf
numerical solvers. We had also experienced unpredictable issues with
linear solvers unable to find feasible starting points—this was not an
issue with the Network Simplex algorithm.

4 CASE STuDY: VAST CHALLENGE 2014

We explore the IEEE VAST Challenge 2014 [14] in this case study.
This is a fictional scenario where several executives from a petroleum
company, “GasTech,” go missing under suspicious circumstances.
Several datasets are provided that could help an analyst determine
why the employees disappeared, where they might have gone, and who
might be responsible. Using our proposed framework, the basic pat-
terns of life and some interesting anomalies are apparent at different
timescales in the resulting visualization.

4.1 Application of Approach to VAST Challenge Data

Our exploration found that the GPS data in the IEEE VAST Challenge
2014 exhibited vehicle patterns typical of everyday life, for the most
part. Vehicles follow roads, moving quickly between locations, and
when a destination is reached the vehicle is switched off and the GPS
data stops recording. We fill in these missing data by first downsam-
pling the GPS data to 10 minute intervals and filling forward to impute
the missing data lost by the vehicle being switched off. The data is
down sampled by taking the last measurement in each time window.

From this modified dataset, we were able to find regions where en-
tities spent most of their time (instead of the roads where most of the
cars were driven). This was done by applying the DBSCAN clustering
algorithm [9] to the imputed dataset. We used this algorithm because
the clusters it produces on 2-D data are easily explainable in terms of
its primary parameter &, it detects clusters of uneven shape and size,
and does not require specifying the number of clusters a priori.

Event sequences are found by substituting the real-valued (x,y) co-
ordinates with the corresponding cluster label found previously. Be-
haviors are found by coarsening the trajectories into time windows,
where each window counts the amount of time spent in each cluster.
Information is lost during this step, because the histogram does not
preserve the order that event states were visited within the time win-
dow. Behaviors are found at multiple different time granularities, by
resampling using time windows of different sizes.

Interaction sessions are found by partitioning similar behaviors into
non-overlapping groups using the Affinity Propagation clustering al-
gorithm [10]. We chose this algorithm because it does not require the
number of clusters to be known ahead of time and does not have a bias
towards creating evenly sized clusters. Before clustering, we normal-
ized the data by applying TF-IDF normalization. This has the effect of
making very commonly visited places (such as GasTech) less impor-
tant, which can help to identify anomalous behaviors that only occur
for short periods of time or very infrequently in the dataset. Follow-
ing this we performed L2 normalization to give each sample vector
the same magnitude, allowing for a more meaningful comparison us-
ing Euclidean distance. We ran clustering separately for the following
time granularities: 1-day, 2-hour, and 10-minute windows to compute
interaction sessions at different time scales.

4.2 User Interface

We implemented a web-based visualization for exploring the IEEE
VAST Challenge 2014 data. The tool contained two linked views:
storylines that show how behaviors are related over time, and a map
view which showed the event sequences in their original geospatial
context. When a user selects a storyline, or bundle of storylines, the
temporal event sequence for these entities is shown in the map view.
The user could also zoom in on a time window to see the storyline
rendered at a more fine grained level of detail. For example, the initial
view shows two weeks of data with one-day time windows. The user

can select “Tuesday” and then see interactions occurring on Tuesday
at a 2-hour time resolution. The user can then zoom in further on
any 2-hour time window on Tuesday to see that window at 10-minute
increments.

4.3 Relevant Patterns Revealed

The storyline visualization readily produces visual artifacts that reveal
common patterns of life. Figure 2a shows the storylines at 2 hour time
granularity for a single day for Information Technology and Engineer-
ing employees at GasTech. We can see the storylines converge in the
morning and afternoon, and diverge in between, presumably for the
lunch break. Figure 2b shows the end of the day at a 10 minute granu-
larity, and we can see the pattern corresponding to individuals leaving
work at slightly different times. After leaving work the visualization
shows that some of the individuals rejoin elsewhere.

Understanding interactions with executives is relevant to the sce-
nario, so we filter out any employees who don’t have any similar and
contemporaneous behavior with executives. The filtered storyline vi-
sualization, shown in Fig. 2¢, shows two interactions between execu-
tives (green) and security (red). These appear to be out of the ordi-
nary, because most executives behavior is either always dissimilar, or
always similar to others. This is manifested by either isolated or par-
allel lines—the two interactions with security violate this pattern, and
stand out visually. Zooming in on these anomalous interactions re-
veal (see Fig.’s 2d and 2e) that the security employees were co-located
with the executives during the late night and early morning hours. The
security members performing this activity were Hennie Osvaldo and
Isia Vann, who we know, from the ground truth, to be involved in
the disappearance of the executives. Our multi-scale temporal event
sequence visualization of GPS trajectories immediatley revealed pat-
terns of surveillance relevant to the IEEE VAST Challenge 2014.

4.4 Expert Feedback

We solicited feedback from a technical analyst who investigates the
collective movement patterns of individuals. The analyst commented
that the IEEE VAST Challenge 2014 scenario was very similar to the
types investigations she performs. She found it initially strange to
think about behaviors instead of places, but she stated that after ex-
ploring with the tool, this quickly became easy to understand. She
commented that the tool is valuable because it makes it easy to see
who goes to the same places together, and that abnormal behaviors
are visible. She also commented that our color coding scheme was
helpful. She employs a similar technique where she manually assigns
colors to entities based on their known attributes, and suggested that
we consider color-coding to the geospatial view.

The analyst had a few comments about how the general usability
of our visualization might be improved. She suggested that while it
is helpful to know that two or more entities have similar behavior,
analysts may want to know what that behavior is, or when an entity has
assumed a particular behavior. She pointed out that it was difficult to
understand time from the geospatial map alone, which has no explicit
time encoding, and she suggested adding a tooltip for the map to show
the time interval that a particular entity visited a particular location.

The technical analyst had several suggestions to make our visual-
ization more effective for her applications. She said that usually she
is interested in seeing what behaviors are abnormal, and asked for the
capability to train a predictive model on historical data to support this.
Furthermore, if this model was able to identify anomalies, she would
want these to be overlayed in the visualization. She said it would be
important to notify the user when an anomaly was visible at a finer
time scale so that she knew when to look deeper.

5 CONCLUSIONS & FUTURE WORK

Storyline visualization is a powerful technique for communicating
how temporal event sequences co-evolve. However, storylines suffer
from usability issues when event sequences are long. We focused on
solving this problem with a framework for rendering storyline visual-
izations at multiple time scales at interactive speeds. We conducted
a case study using the IEEE VAST Challenge 2014 and found that
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Fig. 2: Relevant storyline patterns: (a) Tight bundling occurs during the morning and afternoon hours indicating employees working together
at the office before and after lunch. (b) Zooming in on the afternoon hours shows a trickle of employees leaving the office at the end of the
day. (c) The weekly patterns of the missing executives and those they interacted with reveal two days with anomalous interactions with security
employees. (d, e) The anomalous interactions occur late at night or in the early morning hours with the missing executives.

our tool quickly reveals anomalous behavior relevant to the scenario.
Feedback from a technical analyst who used the tool was that the tool
would be helpful for her types of investigations. Additionally, the an-
alyst highlighted some areas for future work that would be of further
benefit, including providing the analyst the ability to create custom
groups (through user-trainable machine learning) and anomaly detec-
tion with visual a visual representation on the storyline.
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